Chapter 7
Transformations

Section 4

Translations and Vectors

GOAL 1: Using Properties of Translations

A translation is a transformation that maps every two points P and Q in the plane to points P^{\prime} and Q^{\prime}, so that the following properties are true:

1. $P P^{\prime}=Q Q^{\prime}$
2. $\overline{P P^{\prime}} \| \overline{Q Q^{\prime}}$, or $\overline{P P^{\prime}}$ and $\overline{Q Q^{\prime}}$ are collinear.

THEOREM

THEOREM 7.4 Translation Theorem

A translation is an isometry.

Theorem 7.4 can be proven as follows.

$$
\begin{aligned}
\text { GIVEN } & >P P^{\prime}=Q Q^{\prime}, \overline{P P^{\prime}} \| \overline{Q Q^{\prime}} \\
\text { PROVE } & >P Q=P^{\prime} Q^{\prime}
\end{aligned}
$$

Paragraph Proof The quadrilateral $P P^{\prime} Q^{\prime} Q$ has a pair of opposite sides that are congruent and parallel, which implies $P P^{\prime} Q^{\prime} Q$ is a parallelogram. From this you can conclude $P Q=P^{\prime} Q^{\prime}$. (Exercise 43 asks for a coordinate proof of Theorem 7.4, which covers the case where $\overline{P Q}$ and $\bar{P}^{\prime} Q^{\prime}$ are collinear.)

You can find the image of a translation by gliding a figure in the plane. Another way to find the image of a translation is to complete one reflection after another in two parallel lines, as shown. The properties of this type of translation are stated below.

THEOREM

THEOREM 7.5

If lines k and m are parallel, then a reflection in line k followed by a reflection in line m is a translation. If $P^{\prime \prime}$ is the image of P, then the following is true:

1. $\overleftrightarrow{P P^{\prime \prime}}$ is perpendicular to k and m.
2. $P P^{\prime \prime}=2 d$, where d is the distance between k and m.

Example 1: Using Theorem 7.5

In the diagram, a reflection in line k maps GH to $\mathrm{G}^{\prime} \mathrm{H}^{\prime}$, a reflection in line m maps $\mathrm{G}^{\prime} \mathrm{H}^{\prime}$ to $\mathrm{G}^{\prime \prime} \mathrm{H}^{\prime \prime}, \mathrm{k} \| \mathrm{m}, \mathrm{HB}=5$, and $\mathrm{DH} \mathrm{H}^{\prime \prime}=2$.
a) Name some congruent segments.

$$
\begin{aligned}
& H G=H^{\prime} G^{\prime}=H^{\prime \prime} G^{\prime \prime} ; B D=A C ; H B=H^{\prime} B ; \\
& G A=G^{\prime} A ; H^{\prime} D=H^{\prime \prime} D ; G^{\prime} C=G^{\prime \prime} C
\end{aligned}
$$

a) Does $\mathrm{AC}=\mathrm{BD}$? Explain.

Yes, $\mathrm{b} / \mathrm{ck} \mathrm{||} \mathrm{~m} \rightarrow$ distance is same between the lines at all points
a) What is the length of GG"?

$$
14 \text { (use } 7.5 \rightarrow 7 \times 2 \quad \mathrm{OR} \quad \mathrm{HH} \text { " }=14 \rightarrow \mathrm{GG} \text { " }=14 \text { as well) }
$$

Translations in a coordinate plane can be described by the following coordinate notation:

$$
\underbrace{(x, y) \rightarrow}(x \pm a, y \pm b)
$$

where a and b are constants. Each point shifts a units horizontally and b units vertically. For instance, in the coordinate plane at the right, the translation $(x, y) \rightarrow(x+4, y-2)$ shifts
 each point 4 units to the right and 2 units down.

$$
\begin{aligned}
& \text { right/up }+ \\
& \text { left / down }-
\end{aligned}
$$

Example 2: Translations in a Coordinate Plane

Sketch a triangle with vertices $A(-1,-3), B(1,-1)$ and $C(-1,0)$. Then sketch the image of the triangle after the translation $(x, y) \rightarrow(\underbrace{x-3}_{y}, \underbrace{y+4}_{y})$.

GOAL 2: Translations Using Vectors

Another way to describe a translation is by using a vector. A vector is a quantity that has both direction and magnitude, or size, and is represented by an arrow drawn between two points.

The diagram shows a vector. The initial point, or starting point, of the vector is P and the terminal point, or ending point, is Q. The vector is named $\stackrel{P Q}{P Q}$, which is read as "vector $P Q$." The horizontal component of $\overrightarrow{P Q}$ is 5 and the vertical component is 3 .
The component form of a vector combines
 the horizontal and vertical components. So, the component form of $\overrightarrow{P Q}$ is $\langle 5,3\rangle$.

Example 3: Identifying Vector Components

In the diagram, name each vector and write its component form.

RS, UL $\langle 3,4\rangle$
b.

c.

RS, D3
$\langle 3,-3\rangle$

Example 4: Translations Using Vectors
The component form of $\overrightarrow{G H}$ is $\langle 4,2\rangle$. Use $\overrightarrow{G H}$ to translate the triangle whose vertices are $A(3,-1), B(1,1)$, and $C(3,5)$.

Example 5: Finding Vectors

In the diagram, $Q R S T$ maps onto $Q^{\prime} R^{\prime} S^{\prime} T^{\prime}$ by a translation. Write the component form of the vector that can be used to describe the translation.

Example 6: Using Vectors
Navigation: A boat travels a straight path between two islands, A and D. When the boat is 3 miles east and 2 miles north of its starting point, it encounters a storm at point B. The storm pushed the boat off course to point C, as shown.

Write the component forms of the two vectors shown in the diagram.

The final destination is 8 miles east and 4.5 miles north of the starting point. Write the component form of the vector that describes the path the boat can follow to arrive at its destination.

已

EXIT SLIP

